Программа «TopazMemManager» для сохранения результатов измерения оптического тестера Топаз 7000-А»/«Топаз 7000-AL». Руководство пользователя

Введение

Программа «ТораzМетМапаger» предназначена для загрузки результатов измерения, сохраненных в памяти оптического тестера типа «Топаз-7000-А»/«Топаз-7000-AL», в память компьютера, сортировки загруженных данных и сохранения их в виде текстовых файлов, пригодных для загрузки в программу Microsoft Office Excel или OpenOffice.org Calc.

Требования к компьютеру.

Компьютер IBM PC с системой Windows 98/2000/ХР/Vista, наличие последовательного порта RS-232C или преобразователя USB-RS-232C для связи с прибором.

Установка программы

Диск с программой в ходит в комплект поставки оптических тестеров типа «Топаз-7000-А»/«Топаз-7000-AL». Для установки программы на компьютер требуется запустить с установочного диска файл Setup.exe и далее следовать указаниям программы установки. По окончании процесса установки в меню Windows «Пуск/Программы» будет создана группа «TopazMemManager» и запущен исполняемый файл программы Topaz-7000-AL.exe.

Запуск программы

Для запуска программы следует запустить исполняемый файл приложения «Topaz7000-AL.exe» из меню «Пуск/Программы/TopazMemManager» или используя соответствующий ярлык (Shortcut) на рабочем столе Windows.

На дисплее должно появиться главное окно программы, аналогичное изображенному ниже.

TopazMemM	anager					🗙
Файл Память П	Іомощь					
Тип прибора	Cep.r	юмер Вер	осия ПО	1	Чте	ние
Память п	ірибора	втоопределение д (PA)	лины волны	Гесте (затух	:р:Автомат ание-длина)	I естер-Автомат (все результаты)
N n/n	N изм.	Длина волны	Рез-т изм.		Опорн.уров.	Тип изм.
<		, 				>

Установление соединения с оптическим тестером «Топаз-7000-А» / «Топаз-7000-AL»

Подключите прибор к порту RS-232 с помощью соединительного кабеля из комплекта прибора. Включите питание прибора. Запустите программу «TopazMemManager». Нажмите кнопку «Connect» в главном окне программы. По истечении небольшого промежутка времени, в течение которого программа определяет последовательный порт, к которому подключен прибор, в верхней части главного окна программы отобразятся данные подключенного прибора.

🗊 TopazMemMar	nager					🕨
Файл Память Пом	мощь					
Тип прибора ТОПАЗ-7316	Cep.1	номер Вер 71	осия ПО V9.4L	_		
Connect Rese	et				Чте	зние ияти
Память пр	ибора	втоопределение д (PA)	лины волны	Теста (затух	ер-Автомат ание-длина)	Тестер-Автомат (все результаты)
N n/n I	N изм.	Длина волны	Рез-т изм.		Опорн.уров.	Тип изм.
<						

Загрузка результатов измерения, хранящихся в памяти оптического тестера

Чтобы начать загрузку результатов измерения, нужно нажать кнопку «Чтение памяти», расположенную в правой верхней части главного окна программы. После этого на дисплее компьютера должно появиться диалоговое окно с сообщением о количестве элементарных ячеек памяти тестера, содержащих информацию.

Нажав кнопку «ОК», вы продолжите загрузку. При этом в верхней части главного окна программы появится сообщение с указанием примерного времени загрузки в секундах.

Чтение памяти прибора								
В памяти прибора 097 строк данных. Вы хотите продолжить загрузку?								
ОК	Отмена							

Максимальное время загрузки полностью заполненной памяти прибора около 3-х минут.

į	TopazMe	mManager						🗙	
	_		_	_					
	Тип приб	0 7010	Сер.номер	Bep	осия ПО	-			
1	TONAS	1	071	1	V 3.4L		[
	Connect	Reset	Ждите.	Время за	агрузки при	мерно 6 се		ение Мяти	
Память прибора			Автоопре	деление д (РА)	лины волны	Тесте (затух	Тестер-Автомат Тестер-Автомат (і затухание-длина) результаты)		
	N n/n	N изм.	Длина	а волны	Рез-т изм.		Опорн.уров.	Тип изм.	
	<							>	

По окончании загрузки во вкладке «Память прибора» отобразятся загруженные данные измерений.

В процессе загрузки программа производит сортировку данных по типам измерений в соответствии с содержимым колонки «Тип измерений».

TopazMe	mManager				
ил Памяты	ь Помощь				
T	(C	D			
і ип прис	popa L	ер.номер вер	сия по		
TORA3	-7316	671	/9.4L		
Connect	Reset			Чте	ние іяти
Памя	ть прибора	Автоопределение дл (PA)	ины волны	Тестер-Автомат (затухание-длина)	Тестер-Автомат (все результаты)
N n/n	N изм.	Длина волны	Рез-т изм.	Опорн.уров.	Тип изм.
1	1	1310nm	-0.30dB	-2.41dBm	OPA
2	1	1550nm	-0.49dB	-2.24dBm	OPA
3	2	1310nm	0.01dB	-2.71dBm	OPA
1	2	1490nm	0.01dB	-2.96dBm	OPA
5	2	1550nm	0.01dB	-2.73dBm	OPA
6	3	1310nm	0.02dB	-2.71dBm	OPA
7	3	1490nm	0.02dB	-2.96dBm	OPA
3	3	1550nm	0.00dB	-2.73dBm	OPA
9	4	1310nm	0.02dB	-2.71dBm	OPA
10	4	1490nm	0.02dB	-2.96dBm	OPA
11	4	1550nm	-0.03dB	-2.73dBm	OPA
12	5	1310nm	0.03dB	-2.71dBm	OPA
13	5	1490nm	0.02dB	-2.96dBm	OPA
14	5	1550nm	-0.04dB	-2.73dBm	OPA
15	6	1310nm	0.03dB	-2.71dBm	OPA
16	6	1490nm	0.03dB	-2.96dBm	OPA
17	6	1550nm	-0.04dB	-2.73dBm	OPA
18	7	1310nm	-0.03dB	-2.90dBm	IL AB
19	7	1310nm	14.93dB	-2.90dBm	ORLA
20	7	1550nm	0.00dB	-2.56dBm	IL AB
21	1	155Unm	18.17dB	-2.56dBm	URLA
22	1	1490nm	U.11dB	-2./1dBm	IL AB
23	7	1490nm	19.05dB	-2.71dBm	ORLA
24	1	1310nm	U.UUdB	-2./2dBm	IL BA
25	7	1310nm	19.75dB	-2.72dBm	ORLB
26	/	1550nm	-0.01dB	-2.85dBm	IL BA
27	/	155Unm	16.25dB	-2.85dBm	URLB
28	1	1490nm	U.UUdB	-2.63dBm	IL BA

Во вкладку «Авто-определение длины волны (РА)» будут помещены данные измерений тестера, полученные в режиме «Ра».

Тип при ТОПА:	6opa Ce 3-7316	ер.номер Ве 671	рсия ПО V9.4L			
Connect	Reset				Чтение памяти	
Пам	ять прибора	Автоопределен волны (ие длины РА]	Тестер-Автомат (затухание-длина)	Тестер ре	-Автомат (все зультаты)
V изм.	Затухание1310	Реф.уров.1310	Затухание1490	Реф.уров.1490	Затухание1550	Реф.уров.155(
1	-0.30dB	-2.41dBm			-0.49dB	-2.24dBm
2	0.01dB	-2.71dBm	0.01dB	-2.96dBm	0.01dB	-2.73dBm
3	0.02dB	-2.71dBm	0.02dB	-2.96dBm	0.00dB	-2.73dBm
4	0.02dB	-2.71dBm	0.02dB	-2.96dBm	-0.03dB	-2.73dBm
5	0.03dB	-2.71dBm	0.02dB	-2.96dBm	-0.04dB	-2.73dBm
6	0.03dB	-2.71dBm	0.03dB	-2.96dBm	-0.04dB	-2.73dBm
12	-0.27dB	-3.07dBm	-0.36dB	-2.89dBm	-0.31dB	-3.08dBm
13	-18.13dB	-3.07dBm	-17.36dB	-2.89dBm	-81.92dB	-3.08dBm

Во вкладку «Тестер-Автомат (затухание)» будут помещены данные измерений затухания, выполненные в режиме «Тестер-автомат»

Файл Панять Понощь Сер.номер Версия ПО ТОПА37316 671 V9.4L Connect Reset Чтение паняти Память прибора Автоопределение длины волны Тестер-Автомат (затухание длина) Тестер-Автомат (затухание длина) N изм. Длина волны Затухание 8-8 Среднее Длина линии 7 1310 -0.03d8 0.00d8 -015 1490 0.11d8 0.00d8 -02 1550 0.00d8 -0.02 - 1490 -0.03d8 0.02 - 1490 -0.048 -0.04 - 1550 -0.0148 -0.02 - 1490 -0.048 -0.04 - 1550 -0.0148 -0.04 - 1550 -0.028 -0.016 - 110 1310 -0.0248 - 1550 -0.0248 - - 1490 -0.0248 - - 1550 -0.0248 - <td< th=""><th>🗊 То</th><th>pazMei</th><th>mManager</th><th></th><th></th><th></th><th></th><th> 🗙</th></td<>	🗊 То	pazMei	mManager					🗙
Тип прибора Сер. номер Версия ПО TOПA3-7316 671 V3.4L Connect Reset Чтение панять Память прибора Автоопределение алины волны (PA) Тестер-Автомат (затухание длина) Тестер-Автомат (затухание длина) N изм. Длина волны Затухание A-B Затухание B-A Среднее Длина линии 7 1310 -0.03dB 0.00dB -015 150 1550 8 1310 -0.01dB 0.00dB -005 8 1310 -0.01dB 0.02dB 0.05 9 1310 -0.02dB 0.00dB -015 150 1490 -0.04dB 0.02dB 0.05 9 1310 -0.02dB 0.03dB 005 10 1310 -0.02dB 0.03dB 105 10 1310 -0.02dB 0.03dB 0.05 1490 -0.02dB 0.03dB 101 110 1310 -0.02dB 0.03dB -0.05 14 1490 -0.02dB 0.014B 115 <td>Файл</td> <td>Память</td> <td>Помощь</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Файл	Память	Помощь					
Тип прибора Сер. номер Версия ПО TOTIA3-7316 671 V3.4L Connect Reset Preview nammark Память прибора Автоопределение длины волны (PA) Tecrep-Asrowar (saryxanue длина волны Tecrep-Asrowar (saryxanue длина пинии N изм. Длина волны Загухание A-B Загухание B-A Среднее Длина линии 7 1310 -0.03dB 0.00dB -015 1490 114B 0.00dB -055 8 1310 -0.014B -0.03dB -002 1490 -0.044B -0.044B -0.044B -0.044B -0.05 1490 -0.014B -0.024 0.005 1490 -0.014B -0.024B -0.015 1490 -0.014B -0.024B -0.016 -0.024B -0.016 -0.025 10 1310 -0.024B -0.014B -0.025 10 1310 -0.024B -0.014B -0.05 10 1490 -0.024B -0.014B -0.015 10 11 1310 -0.024B -0.014B -0.05 11								
Тип прибора Сер.номер Версия ПО TOПA3.7316 671 V9.4L Connect Reset Чтение памяти Память прибора Автоопределение длины волны (PA) Тестер-Автомат (затухание длина) Тестер-Автомат (затухание длина) Тестер-Автомат N изм. Длина волны Затухание 8-А Среднее Длина линии 7 1310 0.03d8 0.00d8 .015 1490 0.11d8 0.00d8 .005 1550 0.00d8 .0148 .004 1550 0.00d8 .0148 .044 1490 -0.01d8 .002d8 .005 1490 -0.01d8 .02d8 .005 1490 -0.01d8 .02d8 .005 1490 .02d8 .003d8 .005 111 1310 .02d8 .0116 1490								
ТОПАЗ-7316 671 V9.4L Connect Reset Чтение (PA) Чтение (PA) Чтение (затухание-длина) Тестер-Автомат (затухание-длина) Тестер-Автомат (результать) N изм. Длина волны Затухание А-8 Затухание B-A Среднее Длина линии 7 1310 0.0348 0.0048 .015 1 1490 0.11d8 0.0048 .005 8 1550 0.0048 .0048 .02 1490 0.0148 .0048 .02 1490 .00148 .0048 .02 1490 .00148 .0048 .03 1490 .00148 .005 9 1310 .00248 .005 10 1490 .00348 .015 000001m 1490 .00348 .015 000001m 1490 .00348 .015 10 1310 .00248 .016 11 1490 .00348 .015 14 1490 <td>Т</td> <td>ип приб</td> <td>opa</td> <td>Сер.номер Ве</td> <td>рсия ПО</td> <td></td> <td></td> <td></td>	Т	ип приб	opa	Сер.номер Ве	рсия ПО			
Connect Reset Чтенне память (PA) Тестер-Автомат (PA) Тестер-Автомат (затухание-длиню) Тестер-Автомат результаты) Тестер-Автомат результаты) N изм. Длина волны Затухание A-B Затухание B-A Среднее Длина линии 7 1310 -0.03dB 0.00dB -015		ΤΟΠΑ3	-7316	671	V9.4L			
Connect Reset Намять прибора Автоопределение длины волны (PA) Тестер-Автомат (все результаты) Тестер-Автомат (все результаты) N изм. Длина волны Затухание А-В Затухание В-А Среднее Длина линии 7 1310 -0.03dB 0.00dB -015 1430 0.11dB 0.00dB -005 8 1310 -0.01dB -005 1430 -0.01dB -0.03dB -0.05 1430 -0.01dB -0.02dB -0.05 1430 -0.01dB -0.02dB -0.05 <	-	1.0	1					
Память прибора Автоопределение длины волны (PA) Тестер-Автомат (затухание длина) Тестер-Автомат (затухание длина) Тестер-Автомат результаты) N изм. Длина волны Затухание A-B Затухание B-A Среднее Длина линии 7 1310 0.03dB 0.00dB -015 1490 0.11dB 0.00dB -0055 1550 0.00dB -0.01dB -0.02 1490 0.01dB -0.03dB -02 1490 -0.01dB -0.03dB -02 1490 -0.01dB -0.02dB -0.03 1550 -0.01dB -0.02dB -0.03 1430 -0.01dB -0.02dB -0.025 <td>Cont</td> <td>nect</td> <td>Reset</td> <td></td> <td></td> <td></td> <td>Чтение</td> <td></td>	Cont	nect	Reset				Чтение	
Память прибора Автоопределение длины волны Тестер-Автомат (затухание-длина) Тестер-Автомат (затухание-длина) Тестер-Автомат (все результаты) N изм. Длина волны Затухание А-8 Затухание B-A Среднее Длина линии 7 1310 -0.03dB 0.00dB -015						_	намяти	
Память прибора (РА) [затухание длина) результаты) N изм. Длина волны Затухание А.В. Затухание В.А. Среднее Длина линии 7 1310 -0.03dB 0.00dB -015		_		Автоопределение	1лины волны	Тестер-Автомат	Тестер	Автомат (все
И изм. Длина волны Затухание А-В Затухание В-А Среднее Длина линии 7 1310 -0.03dB 0.00dB -015 1490 0.11dB 0.00dB .005 1550 0.00dB -0015 8 1310 -0.01dB -005 8 1310 -0.01dB -005 9 1310 -0.01dB -0.02dB 1490 -0.01dB -0.02dB .005 9 1310 -0.05dB -0.00dB -0.03 1490 -0.01dB -0.02dB .005 -0.000 1490 -0.01dB -0.02dB .005 -0.00001m 1490 -0.02dB -0.03dB .005 -0.00001m 1490 -0.02dB -0.01dB -0.05 -0.00001m 1490 -0.02dB -0.01dB -0.05 -0.00001m 1490 -0.02dB -0.01dB -0.015 -0.00001m 1490 -0.02dB -0.03dB -0.01 <t< th=""><th></th><th>Памя</th><th>ть прибора</th><th>(PA)</th><th></th><th>(затухание-длина)</th><th>) pe</th><th>зультаты)</th></t<>		Памя	ть прибора	(PA)		(затухание-длина)) pe	зультаты)
7 1310 -0.03dB 0.00dB -015 1490 0.11dB 0.00dB .005 1550 0.00dB -0.01dB -0.005 8 1310 -0.01dB -0.02dB .005 1490 -0.01dB -0.02dB .005 9 1310 -0.06dB -0.02dB .005 9 1310 -0.02dB .005	N из	BM.	Длина волны	Затухание А-В	Затухание В-А	Среднее	Длина линии	
1490 0.11dB 0.00dB .005 1550 0.00dB -0.01dB .002 1490 -0.01dB -0.02 1490 -0.01dB -0.02 1490 -0.01dB -0.02 1550 -0.01dB -0.02dB 1550 -0.01dB -0.02dB 1490 -0.06dB -0.004B 1550 -0.01dB -0.02dB 1490 -0.01dB -0.03 1490 -0.01dB -0.02 1550 -0.02dB 0.03dB 10 1310 -0.02dB -0.01dB 1490 -0.05dB -0.01dB -0.025 1550 -0.02dB -0.01dB -0.025 1550 -0.03dB -0.015 11 1310 0.00dB -0.024B 1490 0.00dB -0.024B 011 1430 0.01dB -0.03dB -0.015 14 1310 0.01dB -0.03dB -0.085 1	7		1310	-0.03dB	0.00dB	015		
1550 0.00d8 -0.01d8 -005 8 1310 -0.01d8 -0.03dB -02 1490 -0.04d8 -0.04 -04 1550 -0.01d8 0.02dB .005 9 1310 -0.06d8 -0.00d8 -0.03 1490 -0.01d8 0.02d8 .005			1490	0.11dB	0.00dB	.055		
8 1310 -0.01dB -0.03dB 02 1490 -0.04dB -0.04dB 04			1550	0.00dB	-0.01dB	005		
1490 -0.04d8 -0.04d8 -0.04 1550 -0.01d8 0.02d8 .005 9 1310 -0.06d8 03 1490 -0.01d8 -0.02d8 .005 1550 -0.02d8 0.03d8 .005 1550 -0.02d8 -0.01d8 -0.015 10 1310 -0.02d8 -0.0148 -0.05 1550 -0.02d8 -0.0148 -0.05 11 1310 -0.02d8 -0.0148 -0.05 1550 -0.08d8 0.1148 0.016 11 1310 0.00d8 -0.02d8 -0.015 1490 0.01d8 -0.02d8 -0.01 000001m 1430 0.01d8 -0.018 -0.01 000001m 14 1310 0.0148 -0.034B -0.01 14 1310 0.0148 -0.01 -0.01 1490 0.0148 -0.01 -0.01 -0.01 1550 0.01d8 -0.01 -0.01 -0.01	8		1310	-0.01dB	-0.03dB	02		
1550 -0.01dB 0.02dB .003 9 1310 -0.06dB -0.00dB -0.045 1490 -0.01dB 0.03dB .005 1550 -0.02dB 0.03dB .005 10 1310 -0.02dB -0.01dB .005 10 1310 -0.02dB -0.01dB .005 10 1310 -0.02dB -0.01dB .005 1550 -0.06dB 0.01dB .025 000001m 1550 -0.06dB 0.11dB .016 11 11 1310 0.00dB -0.02dB .01 1490 0.00dB -0.02dB .01 000001m 1550 -0.02dB -0.01dB .015 000001m 1490 -0.01dB -0.03dB .085 000001m 1490 -0.14B -0.01dB .001 000001m 1490 -0.14B -0.01dB .001 .001 1550 0.01dB -0.01dB			1490	-0.04dB	-0.04dB	04		
9 1310 -0.06d8 -0.00d8 03 1490 -0.01d8 -0.08d8 045 1550 -0.02d8 0.03d8 .005 10 1310 -0.02d8 -0.01d8 015 1490 -0.05d8 -0.00d8 025 1550 -0.08d8 0.0148 016 11 1310 0.00d8 025 1550 -0.08d8 0116 .016 11 1310 0.00d8 012d8 .011 1490 0.00d8 012d8 .015 1490 0.00d8 018 .015 1490 0.01d8 015 14 1310 0.01d8 015 14 1310 0.01d8 016 1550 0.01d8 016 . 1550 0.01d8 016 . 1550 0.01d8 .016 .			1550	-0.01dB	0.02dB	.005		
1490 -0.01dB -0.08dB 045 1550 -0.02dB 0.03dB .005 10 1310 -0.02dB -0.01dB 015 1490 -0.05dB -0.01dB 025 1550 -0.08dB 0.11dB .016 11 1310 0.00dB -0.02dB .017 1490 -0.03dB -0.15 000001m 11 1310 0.00dB -0.02dB .016 1490 0.00dB -0.02dB .01 1550 -0.02dB .011 000001m 14300 0.01dB -0.02dB .01 14 1310 0.01dB -0.03dB 015 14 1310 0.01dB -0.03dB 085 1550 0.01dB -0.01dB 085 1550 0.01dB 085	9		1310	-0.06dB	-0.00dB	03		
1550 -0.02dB 0.03dB .005 10 1310 -0.02dB -0.01dB -015 000001m 1490 -0.05dB 0.01dB -0.25 - - 1550 -0.08dB 0.11dB .016 - - 11 1310 0.00dB -0.02dB .015 - 1490 0.00dB -0.02dB .016 - - 1490 0.00dB -0.02dB .016 - - 1430 0.00dB -0.02dB .01 - - 1550 -0.02dB -0.01dB 015 - - 14 1310 0.01dB -0.03dB .085 - - 14490 -0.14dB -0.03dB .085 - - - 1550 0.01dB -0.01dB - - - - - 1550 0.01dB - - - - - - -			1490	-0.01dB	-0.08dB	045		
10 1310 -0.02d8 -0.01d8 -015 000001m 1490 -0.05d8 -0.00d8 -0.25 1550 -0.08d8 0.11d8 .016 11 1310 0.00d8 -0.03d8 -015 1490 0.00d8 -0.03d8 .016 1490 0.00d8 0.02d8 .01 1550 -0.02d8 -0.0148 -0.05 14 1310 0.01d8 -0.03d8 -01 1490 -0.1d8 -0.03d8 -085 1550 0.01d8 -0.01d8 - 1550 0.01d8 - - 1550 - - - 150 - - - 150 - - - 150 - - - 150 - - - 150 - - - <			1550	-0.02dB	0.03dB	.005		
1490 -0.05dB -0.00dB -025 1550 -0.08dB 0.11dB .016 11 1310 0.00dB -0.03dB -015 1490 0.00dB 0.02dB .016 1550 -0.02dB 0.01dB -0.05 14 1310 0.01dB -0.03dB -01 14 1310 0.01dB -0.03dB -01 14 1310 0.01dB -0.03dB -01 14 1550 0.01dB -0.03dB -01 1550 0.01dB -0.03dB -0.055 1550 0.01dB -0.01dB -0.055 1550 0.01dB -0.01dB -0.055 1550 0.01dB -0.01dB -0.01dB 1550 0.01dB -0.01dB -0.01dB 1550 0.01dB -0.01dB -0.01dB 1550 0.01dB -0.01dB -0.01 1550 0.01dB -0.01 -0.01 1550 0.01dB -0.01 -0.01 1550 0.01dB -0.01 -0.01 1550 0.01dB -0.01 -0.01 1550 -0.01 -0.01 -0.01 1550	10		1310	-0.02dB	-0.01dB	015	000001m	
1550 -0.08dB 0.11dB .016 11 1310 0.00dB -0.03dB 015 1490 0.00dB 0.02dB .01 1550 -0.02dB .015 14 1310 0.01dB 015 14 1310 0.01dB 016 1490 -0.01dB 015 14 1310 0.01dB 003dB 1490 -0.01dB 003dB 085 1550 -0.01dB 085 1550 0.01dB 010dB 1550 01dB 085 1550 01dB 010dB - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			1490	-0.05dB	-0.00dB	025		
11 1310 0.00dB 013dB 015 1490 0.00dB 0.02dB .01 1550 -0.02dB 015 14 1310 0.01dB 015 1490 -0.03dB 085 1550 0.02dB 01 1490 -0.14dB 085 1550 0.01dB 085 1550 0.01dB 016 150 1.016 1.016 150 1.016 1.016 150 1.016 1.016 150 1.016 1.016			1550	-0.08dB	0.11dB	.016		
1490 0.00dB 0.02dB .01 1550 -0.02dB -0.01dB .015 14 1310 0.01dB -0.03dB .01 1490 -0.14dB -0.03dB .085 1550 0.01dB -0.01dB . 1550 0.01dB -0.01dB . 150 0.01dB -0.01dB . 150 0.01dB -0.01dB . 150 0.01dB - . 150 0.01dB . . 150 . . . 150 . . . 150 . . . 150 . . . 150 . . . 150 . . . 150 . . . 150 <t< td=""><td>11</td><td></td><td>1310</td><td>0.00dB</td><td>-0.03dB</td><td>015</td><td></td><td></td></t<>	11		1310	0.00dB	-0.03dB	015		
1550 -0.02dB -0.01dB -015 14 1310 0.01dB -0.03dB 01 000001m 1430 -0.14dB -0.03dB 085			1490	0.00dB	0.02dB	.01		
14 1310 0.01dB -0.03dB 01 000001m 1490 -0.14dB -0.03dB 085 1550 0.01dB 001dB 085			1550	-0.02dB	-0.01dB	015		
1490 -0.14dB -0.03dB085 1550 0.01dB -0.01dB .	14		1310	0.01dB	-0.03dB	01	000001m	
1550 0.01dB -0.01dB . Image: Ima			1490	-0.14dB	-0.03dB	085		
			1550	0.01dB	-0.01dB			

Во вкладку «Тестер-Автомат (все результаты)» будут помещены все данные измерения, выполненные в режиме «Тестер-автомат»

Тип прибо ТОПАЗ-7 Connect	oa C 316 / Reset /	Сер.номер 671	Версия П V9.4L	0		Γ	Чтение памяти		
Память	прибора	Автоопреде	еление длины в (РА)	юлны	Тесте (затух	:р-Автомат ание-длина)	Tec	тер-Авто результ	мат (все аты)
V Дл.вол	ны Потери	A-B I	Тотери В-А	Потер	и Средн.	Возвр.пот.4	A Bos	вр.пот.В	Длина
7 1310	-0.030	∃B	0.00dB		015	14.93dB	19	9.75dB	
1490	0.110	∃B	0.00dB)55	19.05dB	22	2.59dB	
1550	0.000	∃B	-0.01dB		005	18.17dB	10	6.25dB	
3 1310	-0.01a	∃B	-0.03dB	-	02	15.47dB	18	8.34dB	
1490	-0.040	∃B	-0.04dB	-	04	18.07dB	2.	1.54dB	
1550	-0.01a	∃B	0.02dB		005	18.57dB	10	6.99dB	
9 1310	-0.060	∃B	-0.00dB	-	03	15.58dB	10	8.17dB	
1490	-0.01c	∃B	-0.08dB	-	045	18.04dB	2	1.53dB	
1550	-0.020	∃B	0.03dB		005	18.86dB	17	7.11dB	
10 1310	-0.020	∃B	-0.01dB	-	015	16.26dB	16	6.48dB	000001r
1490	-0.050	∃B	-0.00dB	-	025	17.30dB	20	0.48dB	
1550	-0.080	∃B	0.11dB		016	18.37dB	17	7.60dB	
11 1310	0.000	∃B	-0.03dB	-,	015	15.86dB	10	6.78dB	
1490	0.000	∃B	0.02dB		D1	17.78dB	20	0.33dB	
1550	-0.020	∃B	-0.01dB		015	17.77dB	19	9.56dB	
14 1310	0.01	∃B	-0.03dB	-	01	15.63dB	10	6.11dB	000001r
1490	-0.14d	∃B	-0.03dB	-	085	20.54dB	24	4.09dB	
1550	0.01	∃B	-0.01dB			16.43dB	18	8.34dB	

Сохранение данных измерений в текстовом файле

Вы можете сохранить загруженные данные в файле. Для этого нужно выбрать пункт меню «Файл/Сохранить» и в открывшемся стандартном диалоге «Save» ввести имя файла и выбрать нужный каталог на диске компьютера.

Внимание: Данные сохраняются по типам измерений. Поэтому перед сохранением нужно открыть соответствующую вкладку главного окна программы.

Например, если вы хотите сохранить данные измерений, выполненные в режиме «Ра», сначала войдите во вкладку «Авто-определение длины волны (РА)», а затем выберите пункт меню «Файл/Сохранить».

Данные будут сохранены в текстовом формате с разделителями. Строки данных разделяются символами перевода строки, а данные столбцов в пределах одной строки разделены символами «Точка с запятой».

Использование сохраненных данных измерений при подготовке отчета в программах Microsoft Office Excel или OpenOffice.org Calc

Файл с сохраненными данными измерений вы можете открыть как текстовый файл с разделителями в программе Microsoft Office Excel или OpenOffice.org Calc. В качестве разделителей нужно указать символ «Точка с запятой».

Пример файла, открытого OpenOffice.org Calc, приведен на рисунке ниже.

а та	opaz7316_671_TA_ALL.txt - OpenOffice.org	Calc									
<u>Ф</u> айл	Правка Вид Вставка Формат Сервис Данны	е <u>О</u> кно Спр	а <u>в</u> ка								
1	- 🔀 🗔 👒 📝 🗟 🖴 🕓	× n	• 🎸 5 • 6	- 🗟 🛃 🖁	i 🔟 🅢 🕯	🧭 💼 🗟 🔍	0.				
- -	a Aria V 10 V X K Y E Ξ Ξ ≡ ⊞ 💄 % 🧏 🤃 💥 🦛 🤠 🗖 • 効 • A •										
;											
A1	💌 🏂 🚬 = Оптический тест	ер: ТОПАЗ-73	16/ cep.N: 671								
	A	В	С	D	E	F	G	Н			
1	Оптический тестер: ТОПАЗ-7316/ сер.N: 671	_									
2	Номер измерения	Длина волн	ы Потери А - В	Потери В - А	Потери Средн.	Возвр.потери А	Возвр.потери В	Длина А-В			
3	7	1310нм	-0.03dB	0.00dB	015	14.93dB	19.75dB				
4		1490нм	0.11dB	0.00dB	.055	19.05dB	22.59dB				
5		1550нм	0.00dB	-0.01dB	005	18.17dB	16.25dB				
6	8	1310нм	-0.01dB	-0.03dB	02	15.47dB	18.34dB				
7		1490нм	-0.04dB	-0.04dB	04	18.07dB	21.54dB				
8		1550нм	-0.01dB	0.02dB	.005	18.57dB	16.99dB				
9	9	1310нм	-0.06dB	-0.00dB	03	15.58dB	18.17dB				
10		1490нм	-0.01dB	-0.08dB	045	18.04dB	21.53dB				
11		1550нм	-0.02dB	0.03dB	.005	18.86dB	17.11dB				
12	10	1310нм	-0.02dB	-0.01dB	015	16.26dB	16.48dB	000001m			
13		1490нм	-0.05dB	-0.00dB	025	17.30dB	20.48dB				
14		1550нм	-0.08dB	0.11dB	.016	18.37dB	17.60dB				
15	11	1310нм	0.00dB	-0.03dB	015	15.86dB	16.78dB				
16		1490нм	0.00dB	0.02dB	.01	17.78dB	20.33dB				
17		1550нм	-0.02dB	-0.01dB	015	17.77dB	19.56dB				
18	14	1310нм	0.01dB	-0.03dB	01	15.63dB	16.11dB	000001m			
19		1490нм	-0.14dB	-0.03dB	085	20.54dB	24.09dB				
20		1550нм	0.01dB	-0.01dB		16.43dB	18.34dB				
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
					j			>			
Лист	1/1 Базовый	C	ТАНД		Сумма=0		⊖				

Загрузка данных измерений из нескольких оптических тестеров

Если вы хотите загрузить данные из двух и более тестеров не выходя из программы, вы можете воспользоваться кнопкой «Reset». При нажатии на эту кнопку программа разрывает соединение с прибором и освобождает последовательный порт компьютера. При этом в памяти компьютера сбрасываются данные измерений, загруженные ранее. Если вы не сохраняли данные измерений после их загрузки, программа откроет диалог с требованием подтверждения или отмены стирания данных из памяти компьютера.

В результате нажатия кнопки «Reset» главное окно программы принимает такой же вид, как после первого запуска программы. Подсоединив к компьютеру новый прибор, вы можете выполнить загрузку данных измерения из его памяти, описанным выше способом.

Очистка памяти оптического тестера

Для очистки памяти результатов измерения оптического тестера нужно выбрать пункт меню «Память/Очистить».

Программа выведет диалоговое окно с сообщением о количестве данных, записанных в памяти прибора и запросом на подтверждение требования ее очистки. При получении подтверждения память прибора будет очищена и появится окно с сообщением: «Память прибора очищена».

Проблемы связи прибора с компьютером

После неудачной попытки установления связи с прибором программа выдает сообщение: «Нет связи с прибором! Следует проверить питание прибора или соединение с компьютером!».

Topaz7000-AL	×
Нет связи с прибором! Следует проверить питание прибора или соединение с компьютером	ļ
ОК	

Если питание в норме, а кабель связи исправен и подключен правильно, следует обратиться за помощью к изготовителю прибора.

Куда обращаться с замечаниями и предложениями по программе и приборам

НПК «СвязьСервис». г.Санкт-Петербург, Россия т./ф.: (812) 380-85-10, т.:(812) 380-85-09 Адрес для писем: 192012, г.Санкт-Петербург, a/я 51 <u>http://www.comm-serv.ru</u> E-mail: <u>optics@comm-serv.ru</u>